Monday, November 20, 2017

The Appeal of Space Engineering


This week, undergraduate space engineering student Alexandre Séguin reflects on what he might tell a high school student looking to match up their interests with a career path via a university education. In the spirit of such matching, the image above shows the Jules Verne ATV docking with the international space station (image: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Flight_Safety )

by Alexandre Séguin

As the leaves turn to darker colours and the sun makes its visits shorter by the day, I find myself preparing for yet another end of term examination session. Going over my different courses, I pondered that with nearly two and a half years of progress in York’s space engineering program, I interestingly have had the opportunity to explore quite a few different engineering disciplines. I have had a taste of electrical design, programming, 3D modeling, and orbital mechanics to name but a few. When I recently volunteered at the Ontario University Fair, I took these experiences with me to share them with new prospective students. One of the most common question asked was “Why did you chose space engineering?”. I responded with what I usually say, essentially that I liked math, science, and was good at both. However, now that I have a fair amount of experience as a student of space engineering, I believe the question merits a more thorough answer. In a time where apps and silicon chips rule supreme, what is the appeal to study space engineering?

Wednesday, November 15, 2017

Approaching a Defence in the Lab

The first of our current crop of 5 MScs from 2016 will be defending his thesis in December. This post captures Eric's thoughts as he approaches this milestone and ponders his contributions to planetary science.  While any one thesis is incremental, it is undoubtedly an advance; a stone placed atop what came before that raises the island of science higher.

by Eric Shear

It’s the time of year where I reflect on my research and how far I’ve come. The first draft of my thesis is due at the end of this week, so it’s crunch time for me. This particular project reminds me that science is not all breakthroughs. It’s more usually a series of partial successes and dead ends. It is these roadblocks that help us more, by showing us what doesn’t work. In either case, I must document my research. Perhaps someone else will build on what I’ve learned to build a better spacecraft camera.

Since my last post about using LCDs to increase contrast in spacecraft cameras, I’ve made a great deal of progress. I’ve taken over 90 images of the sun with clouds present in the field of view (but not obscuring the sun). Each image was with at least one LCD, and two-thirds of them were with two LCDs in the optical path. All images were taken with the same exposure time and gain.

The biggest difference I’ve noticed is that the sun is so much more powerful than a mere table lamp, that its rays effortlessly penetrate the darkened patches in the LCDs with little attenuation. Take a look at the trio of photos at the top of this post. At left is the photo taken with one LCD filter, unactivated. At center is the same photo taken with two LCD filters, one activated so the circular block-image is visible. At right is both filters activated with both block-images overlapping to attenuate as much light as possible. There isn’t much of a difference between the centre and right photos.

Wednesday, November 8, 2017

The ice-sands of Mars

 
This week Alex gives an update on some of her work with Giang investigating small-scale topography of the Northern Polar Cap of Mars. As always with Alex's posts, expect her flowing prose to be punctuated with fascinating images culled from the many she has examined.

By Alexandra Innanen


With nearly 600 frames from all over the Martian north pole, my efforts have recently been turning to categorization of the nearly 600 variations on ‘polar cap’ which we’ve seen. This is the kind of repetitive work that I can do with the help of a good podcast and some tea, taking a break from my studies to flip through the catalogue of black and white features. Some of the various myriad features which I have been looking at are dunes. The Martial polar cap is lousy with dunes. Some of them are quite obvious, bringing to mind those classic sandy desert landscapes, while others are more hidden; zoom in on a seemingly uniform HiRISE image and suddenly stripy linear dunes start to emerge. There are basically four types of dunes that we’ve seen on the pole: longitudinal, transverse, star and barchan.

Wednesday, November 1, 2017

Surfacing


PVL MSc Student Elisabeth Smith had a bit of a split personality over the summer months, interning at MDA and directing her research back here at the lab with the help of Undergraduate Research Assistant Keagan Lee. Now that she has returned to the lab full time, she is working on writing up the results and finishing up her Thesis.

By Elisabeth Smith


After a summer full of exciting robot testing, customer demos and Excel Macro writing, it was time for me to leave behind my internship and return to the lab and classroom. Having an undergraduate assistant to run experiments over the summer was a great boon, as he was able to collect large amounts of data and come up with an improved method for mixing the particles into my system during the experiment. This greatly improved the data collected for the experiment.

As a brief recap, my research is to develop a method for the determination of the turbidity (that is, the extinction or blocking of light in a liquid due to the presence of particles) by processing images of a laser. The experiment is conducted by shining a laser into an aquarium full of water, taking pictures of said laser, then adding a fixed amount of particles to the system and taking more images, repeating this until the laser is barely visible with the camera. Previously, I was running into issues with the particles simply falling to the bottom of the aquarium instead of being well mixed, resulting in a non-homogenous system. My undergraduate assistant, Keagan, and I came up with a few possible methods to resolve this – such as improved circulation systems, or allowing more time between image series to let the particles better mix. Eventually Keagan came up with a glaringly simple and effective method: remove some water from the system with a beaker, add the particles into that beaker, then mix well and return it to the system. The system would homogenize far quicker than previously, and there were little to no issues with particles settling at the bottom of the aquarium.