Wednesday, October 25, 2017

Time Management: When Undergraduate Research and Midterms Collide


This week, PVL undergraduate Brittney Cooper reflects on the hectic schedule of students, especially those who participate in research in addition to their regular studies. The image above is a snapshot of her desk. It might look a little busy, but research has shown that a cluttered workspace might not be as much of a disadvantage as you might think.

by Brittney Cooper

I’ve been a part of PVL for a while now (before we were even known as “PVL”!) and I began as a volunteer for a couple years during the school year, applying for grants to be a summer student, and then eventually I became a contract RAY (Research at York) student. I’m in my 5th and final year of my undergrad and I feel incredibly lucky and really happy to have as much experience in research and academia as I do now, it’s been a learning experience on many fronts.
One massively beneficial thing I’ve learned from this experience (that seems to dominate my life currently) is time-management. I don’t just mean the concept of it, I mean legitimately sorting out my weeks, days, even hours when times are tough (i.e. midterm season in your final year of undergrad, when you’re applying for grad school).
I kid you not, having a full course load and a part-time research gig has taught me to never underestimate what can be done in an hour, and in the madness of everything, scheduling my time is paramount. It is exhausting, but it is also exhilarating in a really kind of embarrassing way. Being productive and getting things done on my commute, during a break between classes, or just before attending to the remnants of my school-year social-life allows me time to enjoy my weekends. I am aware that this jam-packed lifestyle is not unique to undergraduate students; in fact I feel it is probably akin to what a great deal of post-grads experience in their respective fields, so I feel assured that this is a useful skill to hone.

Monday, October 23, 2017

Back to the lab (Back to reality)

 
This week, PhD student Casey Moore describes what he has been up to in the lab (in tandem with his MSL work!) Now that he has submitted his second MSL paper and is completing his PhD studies, his focus has moved closer to home to help explain some of his measurements. (By the way, don't fault Casey for that groaner of a title - I deserve all the blame)

By Casey Moore

I’ve been finishing up some loose ends for my PhD recently. I recently submitted my second paper to Icarus updating the line-of-sight extinction seen within Gale Crater, Mars using the Mars Science Laboratory’s Navigation Cameras (first paper here), which brings my time with MSL to an end. I will never forget working with such an amazing team of people and am eternally grateful to have been a part of the science operations team for the last four years. I have made contacts that I look forward to continue working with in the future as my career progresses past my Ph.D.

I do have one remaining project that has been consuming most of my time as of late. For the last four years, intermittently, between MSL work, teaching appointments, and conference preparations, myself and a long list of volunteers and summer interns have been collecting transmission spectroscopy data from an array of Martian analog regoliths.

Monday, October 9, 2017

Giang’s Adventures in the Land of Perpetual Grey


Last month, PVL MSc Student Giang left Toronto on the first International Cross-Disciplinary Internship (X-I2) of the TEPS program. In this week's installment he checks in from Oxford University, in the UK. You can find his two "postcard" images above and further down, below the cut.

by Tue Giang Nguyen

The new term has started and as I finish up my work on Mars’ northern polar cap, I head out to start something new in the UK. As a trainee of the Technology for Exo-Planetary Science (TEPS), I have been accepted to an international internship at the university of Oxford. After going through various potential projects such as looking at the ancient Martian atmosphere, it was decided that I will work on thin condensable atmospheres useful for understanding interesting exoplanets like 55 Cancri e or CoRoT-7b. I’ll be working with established Oxford Professor Raymond Pierrehumbert on the project as well as furthering my studies on the Martian polar cap.
This is the first time I’m going to Great Britain, in fact, it’s the first time I’m stepping on European soil (though British people aren’t keen on associating themselves with the rest of Europe these days). Packing for the trip wasn’t problematic as I don’t really have a lot of stuff; I don’t even have an umbrella which I’ve been told is quite necessary for survival in the UK. I was somehow smart enough to remember to buy outlet converters at the airport just before the flight as I can see how it would be quite problematic arriving in England without being able to charge my phone or laptop.

Sunday, October 1, 2017

A Puzzling Moon


This week, Jasmeer Sangha talks about his work extending his simulations to include many different species of planetary volatiles bouncing around on the moon. While water was known to be present, it was LCROSS (depicted above in this artist's concept image from Northrop Grumman) that discovered a wide range of different compounds in the PSRs.
by Jasmeer Sangha
This semester I chose to extend my research past just water molecules and shift focus towards results brought back from LCROSS, the Lunar Crater Observation and Sensing Satellite. The LCROSS mission launched in 2009 and scientists found more than just water on the moon. The mission objective was to have the Centaur, a rocket stage, launch itself into the moon. It was decided that Cabeus, a large crater near the lunar south pole, would be the Centaur’s destination. Cabeus is a permanently shadowed region which allows freezing temperatures to trap particles in a layer a frost.  The debris cloud made by the impact would be analyzed by LCROSS, orbiting up above, to discern the frost's composition. From this experiment, it has been shown that carbon, nitrogen, and sulfur compounds were present in Cabeus, yet water was the dominant constituent, outnumbering all other compounds 5 to 1.
                  Though we know what is in Cabeus crater we are unsure as to how it got there. My previous work focused on the mechanism of traveling water molecules along the surface. The program randomly spawned particles on the surface of the moon and followed there lives until they were trapped in a dark hole for eternity, cooked by the Sun’s rays, or lost to space - what lovely ways to go out, right?  The results would show us how water ice is distributed on the surface. 

Introducing our new Postdoc


Introducing our newest addition to PVL, Dr. Paul Godin who comes to us from the University of Toronto! Paul specialized in laboratory-based research in the atmospheric sciences, and will now apply that strong base to the atmospheres of other worlds. The image above is from the Intergovernmental Panel on Climate Change and depicts IR absorptions both of the atmosphere (top) and of select molecules (bottom).

by Paul Godin


Hello World! My name is Paul and I’m the newest member of the PVL, so I should probably introduce myself, eh? I just completed my PhD in physics at the University of Toronto studying the radiative impacts of several chemicals on the atmosphere, using a metric known as a global warming potential (GWP). A GWP is the measure of the radiative forcing of a pulse emission of one kilogram of gas over a defined period of time (commonly taken to be 100 years), relative to an identical pulse emission of carbon dioxide. Radiative forcing is defined as the net change of radiation at the tropopause; positive radiative forcing means more radiation directed towards the surface (leading to higher surface temperatures), whereas negative radiative forcing corresponds to a net cooling effect.

The radiative forcing of a molecule depends largely on two main factors, the absorption spectrum of the molecule and the absorption profile of the atmosphere. The absorption spectrum of a molecule is a result of the quantum mechanical interactions within the molecule, thus the structure and composition of a molecule will dictate at what wavelengths of light the molecule can absorb. The atmospheric absorption spectrum is the sum of the absorption spectra of all the species present in the atmosphere (largely made up of water, carbon dioxide, ozone, nitrogen, etc.). The atmospheric absorption spectrum for the infrared (wavelengths associated with outgoing radiation) is shown in the top half of the figure at the start of this article. As can be seen, the atmosphere normally absorbs a significant fraction of outgoing radiation, but also has a region where it doesn’t naturally absorb radiation (8-13 μm), which is known as the atmospheric window. This is great for life on Earth; we need to trap some of the radiation to keep the planet from being frozen, but also allows enough heat escape that we don’t turn in to a furnace (i.e. Venus).